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Snowflake Divertor Configuration is Studied in DIII-D  
as a Tokamak Divertor Power Exhaust Concept 

qpeak =
Pdiv

Awet
=

PSOL(1� frad)fgeo
2⇡RSP fexp�q

•  Divertor power exhaust challenge  
–  Steady-state heat flux 

•  Technological limit qpeak ≤ 5-15 MW/m2 
•  DEMO: Unmitigated, qpeak ≤ 150 MW/m2 

–  ELM energy, target peak temperature 
•  Melting limit 0.1-0.5 MJ/m2 

•  DEMO: Unmitigated, ≥ 10 MJ/m2 

•  Snowflake divertor with 2nd-order null 
–  ∇Bp ~ 0 ⟹ Large region of low Bp 

–  Very large Awet possibility 

•  Experiments in TCV, NSTX, DIII-D, EAST 

 
D. D. Ryutov, PoP 14, 064502 2007;  

 PPCF 54, 124050 (2012)  
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Large Region of Low Bp Around Second-order Null in 
Snowflake Divertor is Predicted to Modify Power Exhaust 

•  Geometry properties 
 Criterion:  dXX ≤ a (λq /a)1/3 

–  Higher edge magnetic shear 
–  Larger plasma wetted-area Awet (fexp) 

–  Larger parallel connection length L||  
–  Larger effective divertor volume Vdiv  

•  Transport properties 
 Criterion: dXX ≤ D*~a (a βpm / R)1/3 

–  High convection zone with radius D* 

–  Power sharing over four strike points  
–  Enhanced radial transport (larger λq) 

 
“Laboratory for divertor physics” 
 

 

dSF ≤ a (λq /a)1/3                    dSF≤D* 

Snowflake 

Standard  

Low Bp contour: 0.1 Bp/Bp
mid 
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Outline of talk 
•  Comparisons between snowflake and standard divertor 

encouraging 
–  Compatibility with good core and pedestal performance 
–  Confirmed geometry properties Awet and LII  
–  Initial confirmation of transport properties 

Radiative Snowflake Divertor Experiments in DIII-D 
Suggest Strong Effects on Power Exhaust 

Standard  
Snowflake 

•  Broader divertor radiation distribution 
•  Reduced inter-ELM peak heat flux qpeak 
•  Reduced ELM energy, Tpeak and qpeak 

 
Control of steady-state snowflake configurations in DIII-D with existing coils  
•  E. Kolemen et.al., next talk 
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Increased Plasma-wetted Area Leads to qpeak Reduction 
In Snowflake Divertor 

•  Snowflake with dXX < 10 cm 
•  Core plasma unaffected 

–  5 MW NBI H-mode 
–  Stored energy and density constant 

•  Divertor power balance unaffected 

•  In outer divertor, qpeak reduced by 
30% 
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Standard  Snowflake 
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qpeak Reduction in Snowflake Divertor Partly Due to 
Increased Awet and L|| 

•  Flux expansion increased ~20% 
–  Depends on configuration, can be up to X3 

•  L|| increased by 20-60% over SOL width 
•  Divertor heat flux reduced ~30% 
•  Parallel heat flux reduced ~20%  

SOL width 

Standard  Snowflake 

Strike 
point 
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Convective Plasma Mixing Driven by Null-region 
Instabilities May Modify Particle and Heat Transport 

•  Flute-like, ballooning and 
electrostatic modes are 
predicted in the low Bp region  
–  βp=Pk/Pm = 8π Pk/Bp

2  >> 1 

–  Loss of poloidal equilibrium 
–  Fast convective plasma 

redistribution 
–  Especially efficient during 

ELMs when Pk is large 

•  Estimated size of convective 
zone 
–  Standard: 1cm 
–  Snowflake: 6-8 cm 

D. D. Ryutov, IAEA 2012; Phys. Scripta 89 (2014) 088002. 

•  Divertor null-region βp measured 
by divertor Thomson Scattering 
–  In snowflake, broad region of 

higher βp>>1 
–  Higher X10 during ELMs 
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Heat and Particle Fluxes Shared Among Strike 
Points in Snowflake Divertor 

•  qSP3 / qSP1 < 0.5 
•  PSP3 / PSP1 < 0.3 
•  Sharing fraction 

maximized at low dXX  

ΓSP3 

qSP3 

qSP1 

Standard  Snowflake 
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•  Fit q|| profile with Gaussian (S) and Exp.     
(λSOL) functions (Eich PRL 107 (2011) 215001) 

•  Increased λq may imply increased transport 
–  Increased radial spreading due to L|| 

–  SOL transport affected by null-region mixing 
–  Enhanced dissipation may also play role 

Broader q|| Profiles in Snowflake Divertor May Imply 
Increased Radial Transport 

λq = 2.40 mm 

λq = 3.20 mm 

Standard  Snowflake 
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Divertor Radiation More Broadly Distributed in Snowflake 
for Radiative Divertor, qpeak Reduced by x5 

Standard  Snowflake 

Standard                 Snowflake •  Detached radiative divertor 
produced by D2 injection with 
intrinsic carbon radiation 

•  In radiative snowflake nearly 
complete power detachment at 
PSOL~3 MW 

PSOL = 3-4 MW 
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SF Divertor Weakly Affects Pedestal Magnetic and Kinetic 
Characteristics, Peeling-balooning Stability in DIII-D 

•  At lower ne, H-mode performance 
unchanged with snowflake divertor  
–  Similar Pped, Wped 

–  H98(y,2) ~1.0-1.2,  βN~2 
–  Plasma profiles only weakly affected 

•  Peeling-ballooning stability 
unaffected 
–  Shear95, q95 increased by up to 30% 
–  Medium-size type I ELMs 
–  ELM frequency weakly reduced 
–  ELM size weakly reduced 

Standard  Snowflake 
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ELM Power Loss Scales with Collisionality, Reduced in  
H-modes with Snowflake Divertor 

•  Increased collisionality with 
snowflake ν*ped=πRq95/λee 

•  Both ΔWELM and ΔWELM/Wped 
weakly reduced 

•  Mostly for ΔWELM/Wped < 0.10 

Standard  Snowflake 

Small ELMs removed for 
clarity 

Standard  Snowflake 



13 V.A. Soukhanovskii/IAEA-FEC/Oct. 2014 

Peak ELM Target Temperature and ELM Heat Flux 
Reduced in Snowflake Divertor 

Snowfl
ake •  Type I ELM power deposition 

correlates with τELM 

•  In radiative snowflake, ELM peak 
heat flux reduced by 50-75 %  

•  Similar effect in NSTX 

•  In snowflake divertor 
–  ΔTsurf~EELM/(Awet τELM )1/2 

–  Increased τELM=LII/cs,ped 
–  Weakly reduced EELM 

–  Awet
ELM similar 

S. L. Allen et. al., IAEA 2012 

Standard  Snowflake 



14 V.A. Soukhanovskii/IAEA-FEC/Oct. 2014 

•  SF divertor configurations compatible with high  
H-mode confinement and high pressure pedestal 
 

•  Snowflake geometry may offer multiple benefits for inter-ELM 
and ELM heat flux mitigation 
–  Geometry enables divertor inter-ELM heat flux spreading over 

larger plasma-wetted area, multiple strike points 
–  Broader parallel heat fluxes may imply increased radial transport 
–  ELM divertor peak target temperature and heat flux reduction, 

especially in radiative snowflake configurations 

Developing the Snowflake Divertor Physics Basis 
For High-power Density Tokamaks 




